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1. The domain of physics in biology

Biology as we know it lies within a restricted domain of physics. The laws of 
elementary particle physics and cosmology and the history of the universe serve 
merely to determine the nature of a planetary environment. The dynamical equa
tions of quantum mechanics and quantum electrodynamics (and their classical 
equivalents when appropriate) are the essential elemental laws of physics which lead 
to biology. Some physicists make claims that “we shall never understand life until 
we understand the origins of the elementary particles”. But the real mysteries of 
biology He in the way in which these dynamical laws of physics, and the substrate of 
electrons, photons and nuclei on which they operate, produce the complex set of 
counter-intuitive phenomena labeled with the term biology.

Biology is a problem in dynamics—an organism functions by irreversibly preying 
on the available free energy which it finds in its environment in order to maintain its 
dynamic state. Driven (or non-equilibrium) physical systems of simple components 
already show complex and almost unpredictable behaviors. Turbulence in fluid 
flow, deterministic chaos and fractal forms in snowflakes are a few of the complex 
phenomena which arise from the same simple physical laws and substrates that rule 
biology. Some of the basic unsolved problems of biology, such as the generation of
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complex forms in large systems, can already be seen in these simple systems. Our 
understanding of such problems in physics is far from complete. The physics of 
large systems in equilibrium is unified and simplified through our understanding of 
the derived or secondary laws of statistical mechanics and thermodynamics. There is 
no comparably general theory of strongly non-equilibrium systems. The major 
conceptual problems in biology have the additional complication that the biological 
matter is itself very complex due to a long and selective evolutionary history.

Biology is not a quantum-mechanical problem. Because the masses of nuclei are 
large compared to the masses of electrons, the adiabatic separation of electron and 
nuclear motion in the Schrödinger equation is usually adequate. The electrons can 
then be effectively removed from the problem, leaving a problem of only nuclear 
motion with effective interactions of some complexity between nuclei. This remain
ing problem of nuclear motion is partly in the classical regime, and partly a 
quantum-mechanical problem. The hydrogen stretching vibrations are of large 
quantum energy compared with kT at room temperature, and are rigid in the 
molecular dynamics. The rotational quantum numbers are large at room tempera
ture, and the rotational motion is thus essentially classical, as is much of the 
translational motion. The molecular dynamics of liquid water at room temperature 
can be described in classical terms as the motion of rigid molecules having a 
complex set of two- and three-body forces between them. Accurate descriptions of 
the viscosity, rotational relaxation and dynamic neutron diffraction of liquid water 
have been obtained from the computed dynamics of such a model of water. 
Non-equilibrium problems such as the turbulence of water are in essence problems 
of classical physics, as is biology.

This is not to deny that there are intrinsic limitations in the knowledge with 
which we can know positions and momenta of nuclei. In this regard, the classical 
approximation ignores a quantum-mechanical limitation. But the essential mys
teries, phenomena and complexity of biology are not a problem of Planck’s 
constant. They are a problem of the large size of Avagadro’s number combined with 
the non-equilibrium nature of the system. There do not seem to be any important 
larger quantum coherent aspects to living matter, contrary to the romantic hopes of 
some physicists of the 1930s.

2. Logical, physical and biological computers

Biology can be seen as a hierarchy of computations and computational devices. The 
translation of DNA into protein structure is a kind of computation. The construc
tion of a complex organism from the instructions in DNA is also the following of an 
algorithm. The recognition of a familiar object is a neural computation. These 
diverse computations share some common characteristics because they share an 
evolutionary background. The species which exist in biology today are those which 
have survived the competition with other organisms and the cataclysms of weather 
and geology. At the other end of the size scale, the proteins which exist within a 
given species have survived a competition with different molecules which might have 
performed the same functions, and with the alternative of simply not having this 
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function performed at all. The fundamental survival and competition problem for 
the organism or for the enzyme molecule is to develop an algorithm for predicting 
the future, or more accurately, to develop a behavior such that physical processes 
(or actions) taken now will be likely to be appropriate to the future environment in 
which the organism or molecule finds itself, and promote the survival or reproduc
tion of the organism. The organism which survives best will be that which most 
clearly “sees” the consequences of its possible present actions. The prediction of the 
future from present information is a kind of computation. To understand complex 
aspects of biology beyond the descriptive level, it becomes necessary to think about 
the computational aspects—what is computation and how does biological computa
tion differ from that which we think about in conventional computers. Before 
delving into neurobiological computation, we will illustrate some of the issues.

Computation has three conceptual elements: an input, an output and a “device”, 
which reads the input and produces the output. The particular output, or range of 
outputs, is the consequence both of the particular input and the nature of the 
computing “device”. The classic conceptual device of computational theory is the 
Turing machine. This machine has several internal states. It can read an input-out
put tape, shift the tape, write output on the tape and change the internal state of the 
machine. Universal computation can be performed by such machines. Turing 
machines are intrinsically digital (or logical) machines, having a small number of 
reading and writing symbols and a finite number of internal states. When computa
tion is a physical process, as in a real computer or in biology, each of these elements 
has a physical manifestation.

The description of computers as logical devices has been thoroughly developed in 
the past 50 years. A computer is also a physical dynamical system, which follows the 
laws and limitations of physics. The object of a computer designer is to develop a 
real dynamic system which behaves as similarly as possible to some given logical 
design. Physical systems have noise and imperfections not envisioned in the simple 
logical view of computer function. As a result, considerable effort in hardware 
design is invested in a problem of no logical concern, namely trying to get reliable 
computation in a noisy and fault-filled world. Biology compounds this problem by 
adding a unique view of the nature of errors and of logic itself. We will examine 
these points by an example from protein synthesis.

A growing cell is constantly producing more proteins [see, for example, Watson 
(1976)]. In this process, the information in a strand of messenger RNA is used as an 
instruction for making a protein. The input tape consists of a single strand of RNA. 
The output is a protein, a linear polymer of amino acids which then folds into a 
functional three-dimensional structure. The mRNA is a polymer made up of four 
kind of units, A, U, G and C. The protein is a polymer made up of twenty different 
kinds of amino acids, glycine, alanine, tyrosine,....

AUGGGUCCAAAGAGCCUGUGG UGA..... mRNA
Met Gly Pro Lys Ser Leu Trp stop protein

Protein synthesis is carried out at a polymolecular assembly of proteins and RNA 
called a ribosome, which is the “Turing machine” for the process. Many different 
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molecules participate in the protein synthesis on the ribosome, including tRNA, 
GTP and a host of co-factors. The ribosome reads the mRNA input tape and inserts 
the appropriate amino acids into the protein in sequence. The logical operation 
performed might be described as the following instruction set:

(1) Read the next three bases on the mRNA molecule “tape”.
(2) Look up the corresponding amino acid in the genetic code “dictionary”.
(3) Add that amino acid to the protein.
(4) Shift the input tape by three bases.

The program contains a possible “stop” instruction in the code dictionary. The 
signal for starting is more complex.

The logical operation of reading a particular next codon in the mRNA is actually 
carried out in a chemical reaction which knows nothing about logic. The reaction 
might schematically be written:

peptide-« + correct amino acid -» peptide-« -I-1.

Correct refers to the amino acid in correspondence with the next mRNA triplet. 
There is, however, also a competing reaction

peptide-« + incorrect amino acid -> incorrect peptide-« + 1.

Within the logical view of computation this competing reaction simply “doesn’t 
happen”. From the point of view of chemistry, the competing reaction can happen, 
but has a different energy barrier for taking place. The reaction is rather similar to 
the one desired, and any enzymatic system which allows the correct reaction to take 
place must also allow the incorrect reaction, albeit with rather slower rates. The 
equilibrium constant for adding the correct amino acid and for adding the incorrect 
one are essentially identical. Equilibrium processes—physical processes which take 
place sufficiently slowly—result in useless proteins being formed because a particu
lar incorrect amino acid is as likely to be added as a correct one. The logic which we 
would like the biological system to display—correct amino acid only—is not 
possible without errors, and is possible with low but finite errors only by de
liberately running the system out of equilibrium. In non-equilibrium processes, the 
choice between products can be made on the basis of rates. The biological process 
must be designed to make use of kinetics to obtain accurate logical calculation. The 
qualitative description of biochemistry—that reactions take place because molecules 
fit together, and other reactions do not because the corresponding enzymatic 
binding does not happen—consists of logical statements, and by being only logical 
overlooks the essential non-equilibrium element to real physical computation.

Ordinary computers also make use of dissipation to obtain their accuracy. The 
course of a computation might be described as a motion in computer state space, or 
in a physical phase space. The initial data define a starting point in that space, and 
the computer is supposed to follow an appropriate and determinate path to the 
solution, represented by another point in that space. This is illustrated by the solid 
line with arrows in fig. 1. The effect of noise and imperfections is to cause the flow 
to deviate from the desired direction, and an accumulation of noise or statistical 
imperfections will result in a wrong answer.
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COMPUTER STATE SPACE

Fig. 1. The dynamical trajectory of a computing machine from initial information to the appropriate 
answer. In a noiseless perfect machine, the desired path would be directly followed. Noise and 
imperfections cause increasing divergence from this path, while restoration returns the trajectory toward 

the ideal one.

The way to avoid this problem is to introduce a physical process which squeezes 
the system back down onto the proper track in state space. If we can keep this 
compression going on, it will result in finding the correct answer in spite of noise. 
Compressing a bunch of trajectories in phase space down into a smaller volume is 
easily done by a dissipative process. This squeezing down is essential to avoiding 
errors in a system which has the physical possibility of making them. The reason 
that protein synthesis must be run out of equilibrium is exactly this necessity for 
compacting the occupied state space in a dissipative fashion to avoid errors. (In 
electronic digital computers, the electrical power necessary to do a computation is in 
principle bounded by this aspect, though in fact the power dissipation is far larger 
for reasons which have nothing to do with fundamental physics.) In digital com
puters, this idea is called restoration (von Neuman 1952, Mead and Conway 1980), 
and the fact that a nominal digital “one” (really a particular voltage level) will 
recover to the appropriate level after a transient perturbation is given to the circuit 
is an illustration of the presence of restoration. In thinking about the computations 
which are performed in neurobiology, we must expect that the system will show 
such restoration in an obvious fashion, or else the system would be unable to 
compute. Restoration—which gives a robustness against noise and computer imper- 
fections-is a universal necessity to physical computers, while an irrelevancy in 
logical computers.

Even with restoration, biological computers are inaccurate. The intrinsic accuracy 
of protein synthesis of the simplest sort based on elementary chemical recognition, 
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is about 1 error in 100 in difficult cases (Pauling 1957, Hopfield and Yamane 1980). 
The protein synthesis system also has a proofreading system (Hopfield 1974), which 
consumes more free energy and adds another layer of restoration, resulting in error 
levels on the scale of 1/3000, a drastic level from the point of view of electronic 
machines, but apparently good enough for biology.

The one additional oddity about biological computers is that they do not perform 
as well as possible. Streptomycin resistant mutants of bacteria proofread better 
(Yates 1979) and are more accurate than the normal wild-type bacteria, but are an 
artifact of an evolutionary history with streptomycin present in the growth environ
ment. In the absence of streptomycin, the bacterium reverts to the wild type—which 
is less accurate. The same general kind of less-than-best accuracy has been also 
demonstrated in DNA synthesis in T4 bacteriophage by Muzyczka et al. (1972).

In biology, being as accurate as possible in computations may be a loosing 
proposition! Biology is not interested in perfect logic. The possibility of making 
progress through random accidents—called creative thought when they occur in 
neurobiology, or evolution and speciation when they occur in molecular 
biology—seems to be an essential part of biological computation.

3. Neural computation
We turn next to computation in neurobiology. The object is to understand how a set 
of neurons makes decisions, generates actions, generalizes and learns and profits 
from past experiences. The emphasis here must be on our understanding. To merely 
know the input-output relation of a set of neurons by exhaustive study is not 
satisfying. Worse, a clump of neurons with 100 input neurons and 100 output 
neurons might easily require more than 10 40 bits of information to characterize the 
input-output relation, making exhaustive study impossible. It would be equally 
unsatisfying to know the neural hardware in sufficient detail to be able to simulate 
the hardware on a monsterous digital computer and predict correctly the behavior 
of a neural system. This would correspond to being able to simulate the behavior of 
a classical gas of complex molecules, without the conceptual understandings brought 
to such gases by statistical mechanics and thermodynamics.

Perhaps the largest computational burden placed on our brains is involved in 
visual perception. The end result of this computation is our decisions about what we 
have seen. (It is appropriate to emphasize decisions, for decisions are the essence of 
computation. Strictly linear systems do not truly compute, although they can be 
very useful elements in a computational system.) Given a flash exposure to a typical 
visual scene, we note the presence of a few familiar objects, some rough characteris
tics of each, such as color, general size, etc. The immense supply of almost 
non-meaningful information—more than 109 bits of information were processed by 
the retinal cells which begin this calculation—is compressed into significant percep
tual information, of which there are probably only a few thousand bits. In a digital 
machine such a computation would be done by making a very large number of 
sequential decisions, but somehow the essence of biological decisions seems to be 
rather more holistic, collective, or Gestalt. We want to understand how such 
decisions are made.
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Aspects of neural computations in higher animals which are particularly puzzling 
from a physics viewpoint include:

(1) The system makes very effective use of its computational resources, whether 
measured by speed of calculation or volume or energy considerations.

(2) In such systems, the computations done by the system are very resistant to 
damage to the neural system (fail soft).

(3) Emergent properties such as self-awareness seem to be present.
(4) In higher animals, neurobiology manages to function without a determined 

circuit diagram.
There are two reasons to think that progress might be made in understanding 

neural function. First, the system is large, the connectivity between neurons is large, 
the behavior is somewhat insensitive to the destruction or misfunction of compo
nents, and the calculation seems to have a somewhat holistic character. This 
suggests that collective effects might be involved, and that a search for collective 
effects in neural networks [Little (1974); Little and Shaw (1978); Hopfield (1982)] 
and neural computation might be fruitful. (Note that this is not the way that most 
chip designers work—they do not make use of collective effects, and would attempt 
to suppress them if they ever were to be noticed.) Second, the system cannot be as 
complex as it might appear. It is true that a general module of neurons with 100 
inputs and 100 outputs could require 1040 bits to specify its behavior, and would 
require such a number if all we think of is to list them. But a general module would 
require also 104() bits of information to describe how to build it. A simple module, 
which can be described in perhaps 10000 bits cannot produce a general input-out
put relation. It must produce a very special kind of input-output relation, which 
can be only apparently complex, not truly complex. (In this same fashion, the 
random-number generators which are used in computers appear to provide highly 
random numbers, but in fact generate very special sequences because the generators 
can be described by short programs.)

4. Classical neurodynamics

We must understand what computational or circuit facilities a nervous system has at 
its disposal in order to see what is a mystery and what is trivial. The anatomy of a 
“typical” cortical neuron is sketched in fig. 2. The morphological and functional 
diversity of such cells is very large. We will briefly review the electrophysiology of 
such cells, which is covered in detail in textbooks (see, for example, Kandel and 
Schwarz 1981).

A small electrode can be inserted into a cell body, and the potential difference 
between the inside and the outside of the cell can be studied as a function of time. A 
typical result of such a recording is a baseline potential of about —90 millivolts, on 
which is superimposed a set of more or less stereotyped voltage “spikes” called 
action potentials, rising to a potential of about -I- 50 millivolts, and being of about 1 
millisecond duration. An action potential propagates from a cell body down an 
axon by an active regenerative process, and can thus propagate long distances 
without attenuation.
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Fig. 2. A “typical” neuron from brain, showing the dendritic arbor (chiefly inputs), the cell body or 
soma, and the axon or chief output path.

The rate of generation of action potentials depends on the input to the dendritic 
arborization. Inputs to the dendrites produce current flows which depolarize the cell 
body, and if the cell body is depolarized enough, an action potential will be 
generated. This process can be readily simulated by passing a positive DC current 
into the cell body. The rate of firing (generation of action potentials) as a function 
of that positive current is sketched in fig. 3. Such curves have generally a sigmoid 
form, going from zero for large negative currents to a saturating maximal value of 
100 to 1000 per second (depending on the neuron) for large positive currents.

Fig. 3. The mean firing rate of a typical neuron as a function of the input current to the cell body. A 
sigmoid curve of this general shape is taken as the input-output relation V = g(u) for the model neurons.
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The ends of branches of axons of a cell are connected by synapses to the 
dendritic arborization of other cells. When an action potential reaches a synapse, a 
small amount of a chemical neurotransmitter is released at the axon terminal. Some 
of that transmitter becomes bound to receptors on the adjacent dendrite, and a 
current leak across the dendritic cell membrane is briefly produced. The detailed 
time history of this process depends on the type of cell, and on the particular 
neurotransmitter and receptor molecules involved, but is typically on the millisec
ond scale in simple motor neurons. This net current introduced into the cell body by 
such a process contains positive terms from synapses which excite the cell, and 
negative terms from synapses which inhibit (or suppress) the activity of that cell.

The electrical capacitance of a neuron is not negligible—cell membranes are only 
about 50 A thick. The integrative time constant of a cell is appreciable, on the time 
scale of milliseconds. An individual action potential arriving at a synapse is 
generally not sufficient to result in the production of an action potential by the next 
cell. More typically, many action potentials must arrive (generally at many different 
synapses) on the dendritic arborization of a single cell within an integrative time 
constant before the post synaptic cell will fire.

A minimal set of properties which might be used to describe the functioning of a 
neural network might:

(a) Regard the individual action potentials as irrelevant quantization, and re
place the true output of a cell i (a set of action potentials occurring at particular 
times) by a smooth, continuous property V, describing the short-term average of the 
number of action potentials per unit time being sent out by that neuron. (Similarly, 
the discrete electrons are replaced by continuous charges and currents when one is 
dealing with electronic circuit behavior, and the quantization of electrical charge is 
generally neglected except when a noise analysis is done.)

(b) Describe the effective output V¡ of a cell by a monotonic increasing sigmoid 
function ^ = g,(w,) (where w, is the input voltage of cell z) with g(— oo) = 0 and 
g( + oo ) = 1. (The choice of 1 is only a convenient scaling.)

(c) Linearize the input dendritic arborization. The connection from neuron j to 
neuron i can then be described by a transconductance T . The input to cell z can 
then be described as E-7L|< + /,-. 7, represents the input to a cell coming from 
sensory input (e.g. light falling on a light-sensitive neuron, resulting in a transduc
tion from external light to an internal neural signal), external electrodes placed by a 
neurobiologist, or other neurons not being described at the moment.

(d) Represent the effect of the transmembrane resistance and capacitance of cell 
z by constants p, and C;. These approximations result in the following equations of 
motion for the state of the system of neurons:

These equations (Sejnowskii 1981, Hopfield 1984), describe a classical neurody
namics—classical in the sense of classical physics. They omit the effect of the 
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quantization of the action potentials, the “pulse coding” by which many neurons 
communicate. They are also classical in treating the communication speed as 
infinite, neglecting the time necessary to propagate an action potential.

These are equations both of extreme complexity and also of drastic oversimplifi
cation. The complexities of these equations can be demonstrated by the properties 
of simple circuits of these elements. For example, two neurons can be connected 
together to make a bistable flip-flop circuit. Three or five neurons with negative 
couplings can be connected in a ring, forming a ring oscillator or clock. By choosing 
the correct offsets in the gain functions and the correct T¡ -, a neuron can be set up 
so that its output is very nearly zero unless at least two other neurons which are 
driving it have outputs near one. This makes a logical circuit which performs the 
“and” operation. Continuing in this fashion, we can construct all the elements 
necessary to build the sequential logical operations and memory necessary for a 
universal computer. Any digital computer which can be built can be duplicated (as 
far as its logical operation is concerned) by appropriate choices of the set of g, T, I, 
R and C. The complexity of the behaviors which can be shown by these equations is 
beyond description, for they comprise all possible computations and computers.

In real brains, the synapses themselves change with time due to the activity of the 
network. Learning is believed to chiefly involve the modification of the synaptic 
strengths T¡r A complete set of neurodynamical equations must also describe the 
rate of change of the synaptic strengths, an equation of motion for the Tif 
themselves. Considerable experimental work and modeling of this procedure has 
been done, but cannot be reviewed here. The dynamic equations described above 
might describe the response of a brain to a new situation in the light of what the 
brain already knows, but does not include learning new facts or relations.

These equations are, at the same time, a gross oversimplification of the realities 
known from experimental neurophysiology and neuroanatomy. Individual action 
potentials are known to be important in some parts of neurocomputation, especially 
in early sensory processing in the auditory system and in the visual analysis of 
motion. Cells in invertebrates often display bursting behavior even when driven by a 
constant input, generating a train of equally spaced spikes followed by a period of 
no action potentials. The description of inputs from axons to dendrites is an 
idealization of motor neurons, while neurons in brains often show connections from 
dendrites of one cell to dendrites of another cell, and some connections where three 
processes (e.g. two dendrites and an axon) make mutual close contact. Signals in the 
dendritic arborization do not simply add—for there are rather more complicated 
interactions between inputs, and connections made close to the cell body may 
“veto” the inputs coming from more distant parts of that dendritic arbor by 
forming a shunting impedance path. Some general neurotransmitters have relatively 
longer-lasting or modulatory effects on neurons, and several time scales of integra
tion are present.

The above list of emissions and oversimplifications could be easily extended to 
great length, making many neurobiologists feel that such a set of equations must be 
inadequate. But for looking at collective behaviors, it is essential to model a neuron 
as simply as possible, realizing that if any interesting computational properties 
occur in a simple system, the real system will certainly have these properties, and 
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perhaps more. An excessively complex model of the capabilities of a cell would 
preclude the possibility of understanding the collective aspects of the system. So we 
are led to ask whether these very simple networks will do in a natural, elegant, and 
collective fashion some of the kinds of computation which biology seems to do 
uniquely well.

In conventional computer hardware, memory is located by address. Information 
is stored somewhere, at a particular address, and can be retrieved by an instruction 
to read the contents at that address. This is most obvious in the case of a magnetic 
recording medium, where the information is stored as magnetization at a physical 
location on the recording disc, and the address is a description of that location. It is 
equally true of the chips used in a simple semiconductor memory like a Read Only 
Memory (ROM), where there are two separate sets of signal wires to the chip. One 
is a set of address leads, into which information is sent about the locations to be 
read. The others are information leads, on which the information from the desired 
location is sent out. If we were in possession of part of the information stored at 
some address and wanted the rest of that information, but did not know the 
address, there would be no alternative but to examine each memory in turn. Partial 
information is not a key to more information in ordinary machine memory 
hardware.

Memory in animals seems to be of an entirely different nature. Each of us knows 
many individuals, and a particular acquaintance can be described by a large number 
of characteristics (eye color, height, face shape, accent, vocation, spouse, children, 
shared experiences, education, nationality, political views... ). All these characteris
tics belonging to a single individual are somehow associated or linked in a memory. 
The entire set of features connected to one individual can be retrieved from an 
incomplete and partially incorrect set of information about that individual. “The 
short jovial tennis-playing physicist from MOT” is sufficient information to identify 
Prof. Feshbach, in spite of the fact that MIT has been misspelled and has hundreds 
of physicists and many tennis players. In this retrieval we have no notion of address. 
Any substantial subset of the information can be used to access the memory. 
Psychologists refer to such linkages as associative memory. Associative memory is a 
general and important feature of memory in all animals which learn, and the 
classical association paradigms of Pavlovian condition, often thought of in terms of 
higher animals, have been demonstrated by Gelperin (1983) and Sahley et al. (1981) 
on animals as simple as a garden slug (Limax maximus).

Although associative memories seem natural to biology, they are foreign to 
conventional computer hardware. They turn out to be natural for collective biologi
cal hardware, because the neurodynamics we have given describes a dynamic 
system, not a logical calculation, and the idea of associative memory is a natural 
construct in a dynamical system.

Consider an “information space” about people, with many dimensions. Each axis 
could be labeled with a characteristic such as height, weight, name of spouse, or age. 
In such a space, each person you know is represented by a point, whose location 
describes all characteristics of the individual in question. You know very few of all 
possible people, so the set of points which represent your memories is very sparse in 
this space. Suppose now that you are given partial information about some
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Fig. 4. A simple motion map of the change of the state of a dynamic system, characterized by a set of 
stable states. The stable states represent memories (in the case of associative memory), or more generally, 
possible answers in a computation.

particular friend. This information represents an approximate location in the 
information space. Presumably this approximate location is closer to the position of 
this friend in the information space than to the positions of other individuals. An 
associative memory functions by using this closeness to locate or move to the 
complete information. If a dynamical system is described by a flow characterized by 
stable points, as in fig. 4, the initial information could start the dynamical system at 
a location close to one of the stored memories. If the state-space motion is such that 
the motion goes to the most nearby stable point, the dynamical system would be 
functioning as an associative memory (Hopfield 1982). Many dynamical systems 
display state-space motions with multiple stable states. Any such system is a- 
candidate for an associative memory if in addition the stable states can be placed 
wherever they are desired. Thus associative memory is not an esoteric property of 
computational systems. It is natural behavior of many simple dynamical systems.

In the case of the neuronal dynamics model, when the matrix of connections is 
symmetric, Hopfield (1984) showed that the flow is simple, and has no cyclic or 
strange attractors. Somewhat less stringent conditions will suffice. The symmetry of 
the connections is natural to the associative memory problem because the idea of 
simple association is itself symmetric. The essential step in this proof is the 
construction of a Lyapunov function, the “computational energy”, which decreases 
monotonically during the neurodynamical motion. This energy is minimized (at 
least locally) by the state-space motion. Of course, the system of neurons is itself 
unaware that it is doing anything so grand as minimizing some global function—it 
merely obeys its own neurodynamical equation. This computational energy is simply 
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our way of describing a global or collective property which enables us to understand 
the nature of the behavior of a large and complex system.

The idea of restoration is intrinsic to the notion of computation in a world of 
noise and error. The entire computation of this neural dynamics is intrinsically 
restorative, for the motion of the system is downhill on an “energy” terrain. Minor 
noise, or perturbations in the shape of the energy surface will not change the valley 
to which the state-space trajectory is descending, except when it starts at or 
traverses a logically ambiguous location such as a saddle point in the terrain.

Associative memories based on these principles of collective behavior and neuro
dynamics have been simulated on digital computers. The TtJ construction is itself 
amazingly simple. The Tl} can be built up by adding one memory at a time, as 
biology would require. The particular connections between i and j do not require 
any global information about the memory to adjust themselves, but only make use 
of information locally available from the “experience” of the network being held in 
a state to be remembered by the external input to it. Hebb (1949) postulated 
biological learning rules for synaptic connections which are of the nature that this 
associative memory would require.

Because the neuronal equations also correspond to elementary (but highly 
connected) electrical circuits of novel form, they also suggest the utility of making 
devices of such a structure. John Lambe first constructed such circuits, and there is 
a growing effort to investigate such devices in both electrical and optical formats 
(Lambe et al. 1985, Sivilotti et al. 1985, Jackel et al. 1986, Psaltis and Farhat 1985).

The secret to the simple flow pattern to stable states is the “computational 
energy” function which is always being decreased by the equations of motion. The 
operation of the collective circuit decision could be anthropomorphically described 
as the attempt of the circuit to find a minimum of this function. Computational 
problems can often be stated as minimization or optimization problems. When a 
mapping can be found which creates a correspondence between an energy function 
and the quantity which is to be optimized, then this kind of network may be 
effective in solving the problem. Many perceptual and reasoning problems from 
biology are of this minimization nature. What is the best route home, or the best 
pathway to move your hand in order to reach out and grasp the sandwich? Human 
speech is normally a continuous sound stream. Given such a continuous stream, 
where is the best place to interpret the breaks between words? (If you think this is 
not a problem, try to remember the first time you heard French spoken if your 
native language is not French). In the scene at which you are now looking, what is 
the best way of associating features together so that they will make reasonable 
objects? There is an immense field of optimization problems which biology must 
solve, and the fact that the neural networks are spontaneously capable of making a 
collective optimization decision suggests the way that a nervous system may go 
about doing such computations.

In an effort to understand the power of such networks in difficult computations, 
Hopfield and Tank (1985) took a non-biological optimization problem which is 
computationally very difficult (NP-complete) and examined the kinds of solutions 
which a neural network that we designed would generate. The object was not to see 
how a brain might solve this problem, but rather to study the computing power 
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which an assembly of 100-1000 richly interconnected neurons could possess. The 
Traveling Salesman Problem investigated is defined as follows. Given a particular 
set of cities—Copenhagen, Stockholm, Oslo, Bergen, Malmö, Aarhus,..., in what 
order should one fly between the cities such that each city is visited once, one 
returns to the starting point, and the total distance flown is as short as possible? 
This problem is connected to biological computation of problems like word 
boundaries because in each case, there is a combinatorially larger number of 
possibilities which must be considered.

The simulation showed that a simple network of 900 “neurons” could find a 
good solution to a problem on 30 cities in a single convergence. The settling time for 
a set of neurons involved in such a computation would be 0.1-0.2 seconds. The 
network did not find the best solution. But of the more than 1030 possible solutions, 
the network found one of the best 107, rejecting poor solutions by a factor of 1023. 
This is an immense amount of computation for such a small set of elements. A 
microcomputer, with an intrinsic speed about 105 times faster and containing 
100,000 times more transistors, would achieve a comparable result in a comparable 
time. The fact that the neuronal network found a very good solution but not the 
best one is typical of biological computation. As was evident from the earlier 
molecular examples, biology does not insist on perfect solutions to computational 
problems.

The immense computing power of this small network comes from features which 
are explicitly those of neurobiology. First, large connectivity between neurons (or in 
engineering, amplifiers) is required. Brains have connectivities on the scale of 1000, 
while typical transistors in integrated circuits get inputs from only a few other 
transistors, and send outputs to only a few others. Second, the system operates in an 
analog mode, using the smooth, graded and nonlinear response of a neuron to its 
input. By contrast, the conventional digital machine emphasizes logical operations, 
(“on” or “off’, 1 or 0), and suppresses as much as possible the fact that the 
fundamental hardware is itself an analog circuit. Third, a single collective decision is 
smoothly made by many neurons at once, rather than a sequence of minute logical 
decisions. The operation is as a dynamical physical system rather than as a logical 
one.

5. Beyond neurodynamics: complementarity

I turn finally to topics which I do not usually write about. They are subjects about 
which Niels Bohr would have asked, and on this centenary I am obliged to try to 
give answers—such as they are—to some queries which clearly come forth from the 
legacy of Bohr’s essays.

Bohr’s view of complementarity extended rather more broadly than the narrow 
confines of the wave-particle duality or the quantum-mechanical uncertainty rela
tions. His view came from the understanding of quantum mechanics and its relation 
to classical systems, but did not fundamentally rely on quantum ideas. He asked 
whether there were other contexts in which the conflicting demands of observer and 
of normal unperturbed system behavior produced an essential paradox, and inabil
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ity to know all about a particular system in the same fashion that we cannot ask 
simultaneously wave and particles questions. Such limitations on complete knowl
edge need not even necessarily arise from observer-experiment problems, but might 
arise in other situations. Bohr particularly raised this question with respect to the 
operation of biology, where he remarked (Bohr 1958, 1963):

“The basis for the complementary mode of description in biology is not connected with 
the problems of controlling the interaction between object and measuring tool, already 
taken into account in chemical kinetics, but with the practically inexhaustible complex
ity of the organism.”

This clearly expresses his view that issues of complementarity and the limits of 
knowledge in biology are of the nature that I described tor turbulence, and not 
fundamentally involved with quantum mechanics in a profound way. Bohr’s (1958) 
view toward complementarity in biology evolved during his lifetime, as biology and 
the understanding of quantum physics also rapidly evolved. His later essays them
selves seem somewhat complementary. The next paragraph attempts to combine the 
views expressed chiefly in several assays written in the last five years of his life 
(Bohr 1963).

Bohr viewed the action of the human brain as perhaps the most likely case of the 
occurrence of a complementarity limitation to the precision of knowledge of 
biological behavior. There appeared to Bohr to be intrinsic complementary aspects 
to the detailed study of the anatomy of a particular brain and the thought processes 
in that brain. Since the thought processes themselves change the microanatomy of 
the brain at the molecular level—how else could we remember our thoughts—ob
servation of the function of the brain in a whole animal inevitably changes the 
anatomy of that brain. But an observation of the anatomy of the brain in sufficient 
detail to predict the functioning of that brain is so destructive as to preclude making 
the observations which would test the predictions. In this description, microanat
omy and psychology become complementary views of a brain, to be united by a 
description which like the Schrödinger equation and its interpretation, should show 
why this limitation must forever remain.

What does a generalization of the classical neurodynamic equations in order to 
take into account thermal noise, and more realistic anatomy and physiology, suggest 
about such questions? If, with such generalizations, an adequate number of precise 
measurements were made (including studies of the properties of the modification 
processes) we could with sufficiently large computers predict the state of the 
neuronal system for a short time, and thus be able to simulate its behavior. 
Adequately precise information about a mammalian brain for such purposes might 
well require IO20 bits of information about a single brain, clearly a hopeless task. It 
might be too complex to ever simulate. This might be a fundamental limitation to 
knowledge of such systems. But while Bohr considered this aspect, it is not the 
complementarity which he viewed as most important.

His essential complementarity problem is whether even a complete set of electro
physiological measurements for simulation of neurons in complete detail can be 
connected to particular higher mental processes which are normally described in 
macroscopic or cognitive terms. There must be something observably different in 
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the microscopic behavior of my neurons which occurs between the time at which I 
do not understand a mathematical theorem and the time slightly later when I do 
understand it. That difference can be studied by physiologists. That difference can 
also be pursued by psychologists asking questions about the nature of my under
standing. But even if we can observe all the physiological microdetails, these 
microdetails may not necessarily lead to any knowledge of what “ to understand the 
theorem” means. There may be no way to deduce the information available to the 
psychologist from the data obtained by the physiologist. In such a case, there would 
necessarily be parallel or complementary descriptions of mental phenomena. The 
analog in physics might be a phase transition so subtle that even though we can see 
macroscopically that the phase transition has occurred, the phase itself is so 
complex that it cannot be described microscopically by a list of symbols or words 
short enough to be read during a lifetime. In that case, a complete Hamiltonian, the 
equivalent to the equations of neural dynamics, would still need to be augmented by 
the complementary description of macroscopic physics in order to describe observa
ble phenomena.

The complementarity issues just discussed have to do with the issue of computa
tional complexity and complexity measures, a topic which has barely begun to enter 
physics. There is, in addition, one peculiar aspect of the mathematics of collective 
neuronal computation which has the feeling of complementarity. This involves the 
question as to whether we will be able to understand the logical process by which 
the brain computes.

Computation is, in the usual description, a logical operation. But when we look at 
the way problems like the one of the traveling salesman are solved on a neural 
network (Hopfield and Tank, 1985), it does not turn out to be a logical procedure. 
Figure 5a shows a representation of the state of the neural network at an inter
mediate time during the settling to a solution to such a problem. Each point in the 
array of squares represents the output of a particular neuron. When the square is as 
large as the one at the lower right, that neuron has an output of 1. When the system 
has found a good solution to the problem, each of the outputs will be either 1 or 0. 
Thus, in the final state of the system, the output will appear as in fig. 5b, with one 1 
in each row and each column.

In this computational process, each of the neurons can be thought of as standing 
for a proposition. An output of 1 means that the proposition is considered to be 
true, and an output of 0 means that the proposition is not true. In fig. 5, the 
propositions (which are of the general form “the salesman should go to city D as 
the 7th city in the tour”) are laid out in such a fashion that each proposition 
contradicts the other propositions in each row and column. An appropriate final 
state must have no more than one 1 in each row and each column.

What are we then to make of the intermediate state of the form shown in fig. 5a? 
At this time, the proposition that city D should be in position 8 has a weight of 0.25 
while at the same time, the contradictory propositions that city D should be in 
position 7 and that city C should be in position 8 also have weights of about 0.25. 
The system might be characterized as simultaneously having partial belief in several 
mutually contradictory propositions. There is no obvious logical characterization of 
this state of partial belief in contradictory propositions. We cannot view this partial
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Fig. 5. The linear dimension of each square represents the activity of that neuron. The neuron in square 
A5 represents the proposition that city A should be visited 5th. (a) An intermediate state of the 
calculation. City J has been arbitrarily placed in location 10, so that the output of the corresponding 
neuron is of maximum size, (b) The final stable state of the network, represent the path AEGFIHDBCJ 
(and return to A).

12 3 4 5 6 7 8 9 10 123456789 10
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B ■ • • ■

C ■ • ■ •

B

C

■■

D ■ . • • ■ ■ ■ • D ........................................ ■

E • • ■ • E ■.....................................................

F ■ ■ ■ F ■ ■ ■■......................................

G • ■ ■ ■ G • ■■.............................................

H • • ■ ■ H ..............................■• • • •

1 • • • • 1 • • • •■..............................

j . . . . ...............................■ J
...........................................................■

(a) (b)

belief in terms of probabilities, for the entire system is deterministic. There is a 
logical space in which a proposition is true or false, a space which for N proposi
tions can be described as the vertices on an TV-dimensional cube. The neural 
network computes by moving on a trajectory in the interior of this cube, while only 
the corners have logical meaning. Thus an insistence on finding correct logic during 
the decision process of the network destroys the computation as done by the 
network. The ability to use the non-logical interior of this space seems to be an 
important part of the power of these collective “neuronal” networks.

Is this a sensible way to go—to try to understand a brain by giving up simple 
logic and moving toward analog, analytic, and collective behavior? John von 
Neumann (1948) thought about the relation of the brain to the digital computers 
which he had been so influential in helping develop, and concluded:

“All this will lead to theories (of computation) which are much less rigidly of an 
all-or-none nature... than formal logic. They will be of a much less combinatorial, and 
much more analytical, character.”

He continued this theme in later lectures (von Neumann 1952), but did not find 
what he regarded as a satisfactory solution to the problem of how a brain computes.

6. Summary

We have learned a great deal about the chemical and electrophysiological basis of 
brain since Bohr wrote the cited essays. The way in which important aspects of 
brain function and neural computation could be of a collective nature is beginning 
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to emerge. We see some simplified governing equations which are relatable to 
collective behaviors. These collective behaviors even in rudimentary form seem to 
show how associative memory and combinatorially difficult decision-making of the 
kind necessary in visual or auditory perception can be carried out with great 
effectiveness by a modest collection of neurons.

It is not clear where the limits of such pursuits will lie. Will we be able to explain 
some of the phenomena of cognitive psychology on the basis of details of micro
scopic neuronal behavior? Or will the macroscopies never be microscopically 
understandable? If Bohr’s argument that a form of complementarity may be 
involved in brain turns out to be correct, the mathematical explanation for it will lie 
in the nature of computational complexity and the meaning of computation. Will 
there be a mathematical complementarity in brain? My own guess is that the 
complications of the system are not intrinsic, and that we will be able eventually to 
go astonishingly far toward understanding the language of psychology from a 
microscopic viewpoint. While weather prediction on the basis of molecular modeling 
is impossible, we do understand why there is weather and what storms are on the 
basis of an atomic approach to atmospheric phenomena. In this same sense, new 
approaches to theory in neurobiology should lead us at least to an understanding of 
the existence of psychological constructs on a microscopic basis, and potentially 
lead much further.

Postscript

The editors have expressed the hope that someone might read this book in 
connection to the second Bohr Centenary. The science described here will, 100 years 
from now, be amusingly naive. How science is done—who influenced whom, and 
how—may be of greater interest. I close on a personal note, which would otherwise 
be lost. I did not know Niels Bohr. John Wheeler was the strongest influence in my 
taking a position at Princeton, and Max Delbrück strongly influenced the Caltech 
scene and my interest in moving there. Both of these men were in turn involved with 
Bohr and Copenhagen. I have deep admiration for the imaginative scientific spirit 
of each of them. Reading the essays of Niels Bohr and listening to this symposium, I 
became increasingly aware that many elements I find admirable in these scientists 
are related to the spirit in which Bohr worked. But whether this similarity is due to 
influence or due to mutual affinity is not obvious. Francis O. Schmitt and the 
Neurosciences Research Program did much to stimulate my interest in neurobi
ology. The significance and liveliness of the many discussions about biological and 
network computation with David W. Tank is gratefully acknowledged.

This research was supported in part by NSF grant PCM-8406049.
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Discussion, session chairman N.K. Jerne
Zimanyi: You have used a symmetric connectivity matrix TtJ. But in a neuronal 
network we have about as many inhibitory neurons as excitatory ones. The part of 
the connectivity matrix representing these types of neurons should be antisymmetric 
instead of symmetric. Howe can one overcome that problem?
Hopfield: Even networks which do not in detail look symmetric may be constructed 
equivalently to symmetric networks and possess the stability properties of symmet
ric networks. The symmetry assumed here serves to ensure viability of the mathe
matics. Asymmetric systems open a Pandora’s box of totally uncontrollable 
mathematical behavior, but have a much richer computational structure.
von Weizsäcker: I have no quarrel with reductionism. Bohr used to explain com
plementarity by the difficulty of language. Can you explain the complementarity 
structure in language by your network mode? An example: My uncle, Victor 
Weizsäcker, a medical psychologist, who reminded me in many respects of Niels 
Bohr, once said: “When I ask you: ‘what are you thinking now?’, and you start to 
answer, you are already lying.”
Hopfield: You are absolutely right in referring to Bohr’s pointing out the language 
as an intrinsically complementary system; complementarity must be left out from 
microscopies when deriving collective results in a reductionist attitude.
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Anderson: Going back to one of your first sentences about the complications in 
biology arising not from the size of Planck’s constant, I should like to point to the 
size of Avogadro’s number, a biological constant in itself, as it represents a piece of 
matter approximately our size. This may be the amount of matter necessary to 
produce the required complexity.

Berry. Let me return to your point concerning how thinking causes microscopic 
changes in physiology and your skepticism whether microphysiology could tell us 
when a person has solved a problem. Strictly, I should say “ when the person thinks 
the problem is solved.” I suspect you don’t really believe that, because you and 
everybody in this room knows how solving a problem makes you feel better, quite 
literally. A problem must be awfully easy and awfully trivial to generate no such 
feeling at its solution. Consequently, do you not think the microphysiology should 
display some chemical signal when the person thinks he or she has found the 
solution?

Hopfield'. Emotional states are relatively easy to recognize by chemical signals. I 
think it could probably be done now. But you would still not be able to tell what the 
person’s understanding of the answer was or whether it was solved from your point 
of view.


